date |
day |
level |
topic |
06.11.2024 |
środa, 17:50 |
SL&HL |
Exponential and logarithmic functions and their graphs. Solving equations. |
07.11.2024 |
czwartek, 18:00 |
HL only |
Polynomial functions. The factor and remainder theorems. Sum and product of the roots of polynomial equations. |
08.01.2025 |
środa, 17:50 |
HL only |
The definition of the vector product of two vectors. Properties of the vector product. Geometric interpretation. |
09.01.2025 |
czwartek, 18:00 |
HL only |
Vector equations of a plane. Cartesian equation of a plane. |
15.01.2025 |
środa, 17:50 |
HL only |
Intersections of a line with a plane, two planes, three planes. Angle between a line and a plane and two planes. |
16.01.2025 |
czwartek, 18:00 |
SL&HL |
Presentation of data (discrete and continuous). Histograms. Cumulative frequency graphs. Box and whisker diagrams. |
22.01.2025 |
środa, 17:50 |
SL&HL |
Measures of central tendency. Measures of dispersion. Effect of constant changes on the original data. |
23.01.2025 |
czwartek, 18:00 |
SL&HL |
Linear correlation of bivariate data. Pearson’s product-moment correlation coefficient, r. |
29.01.2025 |
środa, 17:50 |
SL&HL |
Equation of the regression line of y on x. Use of the equation of the regression line for prediction purposes. |
30.01.2025 |
czwartek, 18:00 |
SL&HL |
The probability of an event. Calculating probabilities. Combined events. Mutually exclusive events. Independent events. Conditional probability. |
05.02.2025 |
środa |
|
FERIE ZIMOWE (woj. mazowieckie) |
06.02.2025 |
czwartek |
|
FERIE ZIMOWE (woj. mazowieckie) |
12.02.2025 |
środa |
|
FERIE ZIMOWE (woj. mazowieckie) |
13.02.2025 |
czwartek |
|
FERIE ZIMOWE (woj. mazowieckie) |
19.02.2025 |
środa, 17:50 |
SL&HL |
Discrete and continuous random variables and their probability distributions. Binomial distribution. The normal distribution and curve. |
20.02.2025 |
czwartek, 18:00 |
SL&HL |
Standardization of normal variables (z-values). Inverse normal calculations. |
26.02.2025 |
środa, 17:50 |
HL only |
Use of Bayes’ theorem for a maximum of three events. |
27.02.2025 |
czwartek, 18:00 |
SL&HL |
Understanding of limits (convergence and divergence). Definition of derivative from first principles. Higher derivatives. |
05.03.2025 |
środa, 17:50 |
SL&HL |
Differentiation of a sum and a multiple of functions. The chain rule for composite functions. The product and quotient rules. |
06.03.2025 |
czwartek, 18:00 |
SL&HL |
Increasing and decreasing functions. Local maximum and minimum points. Points of inflexion with zero and non-zero gradients. |
12.03.2025 |
środa, 17:50 |
HL only |
Implicit differentiation. Related rates of change. Optimisation problems. |
13.03.2025 |
czwartek, 18:00 |
HL only |
Derivatives and indefinite integrals of the derivatives of tanx, secx, cosecx, cotx, ax, loga(x), arcsinx, arccosx, arctanx. |
19.03.2025 |
środa, 17:50 |
SL&HL |
Definite integrals. Areas of a region enclosed by a curve y=f(x) and the x-axis. Area between curves. |
20.03.2025 |
czwartek, 18:00 |
HL only |
Integration by substitution. Integration by parts (also repeated). |
26.03.2025 |
środa, 17:50 |
SL&HL |
Area of the region enclosed by a curve and the y-axis in a given interval. |
27.03.2025 |
czwartek, 18:00 |
HL only |
Volumes of revolution about the x-axis or y-axis. |
02.04.2025 |
środa, 17:50 |
SL&HL |
Kinematic problems involving displacement s, velocity v, acceleration a and total distance travelled. |
03.04.2025 |
czwartek, 18:00 |
HL only |
First order differential equations: Variables separable, Homogeneous differential equations. |
09.04.2025 |
środa, 17:50 |
HL only |
First order differential equations: Homogeneous differential equations. |
10.04.2025 |
czwartek, 18:00 |
HL only |
First order differential equations: Integrating factor, Euler’s method. |
16.04.2025 |
środa, 17:50 |
HL only |
Maclaurin series to obtain expansions for ex, sinx, cosx, arctanx, ln(1+x), (1+x)p, p∈ℚ. Maclaurin series developed from differential equations. |
17.04.2025 |
czwartek, 18:00 |
HL only |
Evaluation of limits using l’Hôpital’s rule or the Maclaurin series. |